copyright by

SwissCognitiveThis type of technology has shown to be very useful in life science industries, such as by sorting different types of cancer cells in laboratories. Naturally, technology, which both serves a function, and removes the need for explicit programming, will affect a host of jobs in the life science industry.

There are several types of machine learning and deep learning, which are subcategories of AI. The basic principle dictates that AI is machine intelligence leading to the best outcome when given a problem. This sets up AI well for life science applications – AI can be taught to differentiate cells, be used for higher quality imaging techniques, and analysis of genomic data.

Deep learning is a favorite among the AI facets in biology. The structure of deep learning has its roots in the structure of the human brain, in that there are neural networks, which connect to one another through which the data is passed. At each layer, some data is extracted. For example, in cells, one layer may analyze cell membrane, the next some organelle, and so on until the cell can be identified. 

In classic machine learning, data often required some conversion or manipulation into a more meaningful form, such as features or connections before it could be exposed to the machine learning model. With deep learning, this is not required. Genomic data, which entails a huge number of bases to be analyzed, can be fed directly to the deep learning model, where the computer has to find the meaningful features or relationships. While the AI then removes one job of analyzing genomic data, it also creates a new one – researchers are not in charge of the classification and cannot explain why the model predicts the way it does. This uncertainty in how the model works, opens the opportunity for researchers to find out why the machine learning system, for example, picked one gene over another.

Image analysis is one field of life science that is being affected by AI. While automatic imaging software has existed without AI, the addition of deep learning has allowed software to use several features, which may not initially be obvious.[…]

read more – copyright by

Thank you for reading this post, don't forget to subscribe to our AI NAVIGATOR!