Associate Professor Tamara Broderick and colleagues build a “taxonomy of trust” to identify where confidence in the results of a data analysis might break down.

 

Copyright: news.mit.edu – “Strengthening Trust in Machine Learning Models”


 

Probabilistic machine learning methods are becoming increasingly powerful tools in data analysis, informing a range of critical decisions across disciplines and applications, from forecasting election results to predicting the impact of microloans on addressing poverty.

This class of methods uses sophisticated concepts from probability theory to handle uncertainty in decision-making. But the math is only one piece of the puzzle in determining their accuracy and effectiveness. In a typical data analysis, researchers make many subjective choices, or potentially introduce human error, that must also be assessed in order to cultivate users’ trust in the quality of decisions based on these methods.

To address this issue, MIT computer scientist Tamara Broderick, associate professor in the Department of Electrical Engineering and Computer Science (EECS) and a member of the Laboratory for Information and Decision Systems (LIDS), and a team of researchers have developed a classification system — a “taxonomy of trust” — that defines where trust might break down in a data analysis and identifies strategies to strengthen trust at each step. The other researchers on the project are Professor Anna Smith at the University of Kentucky, professors Tian Zheng and Andrew Gelman at Columbia University, and Professor Rachael Meager at the London School of Economics. The team’s hope is to highlight concerns that are already well-studied and those that need more attention.

In their paper, published in February in Science Advances, the researchers begin by detailing the steps in the data analysis process where trust might break down: Analysts make choices about what data to collect and which models, or mathematical representations, most closely mirror the real-life problem or question they are aiming to answer. They select algorithms to fit the model and use code to run those algorithms. Each of these steps poses unique challenges around building trust. Some components can be checked for accuracy in measurable ways. “Does my code have bugs?”, for example, is a question that can be tested against objective criteria. Other times, problems are more subjective, with no clear-cut answers; analysts are confronted with numerous strategies to gather data and decide whether a model reflects the real world.

“What I think is nice about making this taxonomy, is that it really highlights where people are focusing. I think a lot of research naturally focuses on this level of ‘are my algorithms solving a particular mathematical problem?’ in part because it’s very objective, even if it’s a hard problem,” Broderick says.[…]


Thank you for reading this post, don't forget to subscribe to our AI NAVIGATOR!


 

Read more: www.news.mit.edu