Energy FoodTech HealthTech Research

Machine Learning Used to Interpret Genetic Influence over Behavior

Machine Learning Used to Interpret Genetic Influence over Behavior

Mice scamper around while searching for food, but genetics may be the hidden hand regulating these meandering movements.

copyright by www.azorobotics.com

SwissCognitiveScientists at the University of Utah Health are using to derive connections between genetic controls that outline the incremental steps of instinctive and learned behaviors. The results of the research can be seen in the August 13th online issue of Cell Reports.

Patterns of complex behavior, like searching for food, are composed of sequences that feel random, spontaneous and free. Using , we are finding discrete sequences that are reproduced more frequently than you would expect by chance and these sequences are rooted in biology.

Christopher Gregg, Ph.D., Study Senior Author and Assistant Professor in Neurobiology and Anatomy, University of Utah Health

The team is diving into the new territory of behavioral sequencing.

“We are trying to understand the architecture of complex behavior and how genetics shape these patterns,” said Gregg.

The study supports the concept that complex behavior is made up of an assortment of finite “building blocks” the authors refer to as behavioral modules and that genetics are regulating the progression of these building blocks to develop various behavioral patterns.

The team tested 190 mice with differences in their age and genetics as they moved from their home into a uniquely built “arena” to assess the set of behavioral sequences expressed while searching for food. In the hunt for food, mice display behaviors that necessitate a number of neural systems to control seeking-behaviors, preservation, navigation, anxiety, hunger, reward, attention, satiety, and memory. The new techniques exposed that different genetic and age effects impact different sequences.

Most species have a home range and their behaviors are structured around this home range. We were able to identify reproduceable behavioral sequences and use this information to understand the complex patterns over time.

Christopher Gregg, Ph.D., Study Senior Author and Assistant Professor in Neurobiology and Anatomy, University of Utah Health

The team divided round trips from home to a food source and back into a sequence of over 5,600 mouse actions. Layered within these actions are extra information, such as distance traveled, velocity, gait pattern, and locations visited. With the help of , they assessed this information and recognized 71 reproducible behavioral sequences that are the fundamental building blocks for more complicated behavior patterns.

The changeover from one “building block” to the next suggests a mechanistic relationship that produces specific foraging behaviors that lessen energy expenditure, predation risk, and caloric intake. Furthermore, the algorithm was able to identify impulsive responses that are unique to some mice.

Gregg believes this method is adequately sensitive to pick up a mutation in the copy of one gene. To establish this point, his team concentrated on hunting behaviors in mice with a mutation in an imprinted gene, Magel2, which is connected to autism.[…]

read more – copyright by www.azorobotics.com

0 Comments

Leave a Reply