Banking Education Oil Industry Research Telecommunication

Neural Network [AI] helps in Physics Research

copyright by insidetheperimeter.ca

Out of the box application of

A machine algorithm designed to teach computers how to recognize photos, patterns, and hand-written digits has now been applied to a vastly different set a data: identifying different phases of condensed matter.

Moving from one phase to another

In a project half-jokingly called “Phasebook,” two Perimeter researchers showed that a neural networkNeural Networks are simplified abstract models of the human brain. Usually they have different layers and many nodes. Each layer receives input on which it carries out simple computations, and passes on the result to the next layer, by the final layer the answer to whatever problem will be produced.  system – a standard part of today’s powerful artificial intelligenceArtificial Intelligence knows many different definitions, but in general it can be defined as a machine completing complex tasks intelligently, meaning that it mirrors human intelligence and evolves with time. () algorithmsAn algorithm is a fixed set of instructions for a computer. It can be very simple like "as long as the incoming number is smaller than 10, print "Hello World!". It can also be very complicated such as the algorithms behind self-driving cars. – can also identify phase transitions between states of matter. The research, published in the journal Nature Physics , validates the idea that the relationship between theoretical physics and can be a fruitful, two-way exchange. The fields have long been linked. research has often tapped physicists to help develop machine for industry. Now, former Perimeter postdoctoral fellow Juan Carrasquilla and Roger Melko , an Associate Faculty member at Perimeter and Associate Professor at the University of Waterloo, have turned the tables by posing a fairly straightforward question: could industry-standard help fuel physics research?

answers physics questions

To find out, Carrasquilla and Melko repurposed Google’s TensorFlow , an open-source software library for machine , and applied it to a physical system. The same algorithm helps computers read hand-written digits such as those on postal envelopes or bank cheques, powers facial recognition capabilities and and translation, and famously was used to beat the human world champion in the ancient game of Go. “Instead of recognizing hand-written digits, we took the same neural network and put in images our computers produced of different phases,” says Melko, who holds the Canada Research Chair (Tier 2) in Computational Quantum Many-Body Physics and won the 2016 Herzberg Medal from the Canadian Association of Physicists. Former Perimeter postdoc Juan Carrasquilla. The neural network distinguished phases of a simple magnet, and could distinguish an ordered ferromagnetic phase from a disordered high-temperature phase. It could even find the boundary, or phase transition, between phases, says Carrasquilla, who now works at quantum computing company D-Wave Systems. “We inspected the neural network and found out it learns to read the magnetization of the images, [which is] the theoretical concept used to quantify the degree of order in simple magnets,” he explains […]

  1. SwissCognitive

    Neural Network [#AI] helps in Physics Research

    #Deep_Learning #Game #Machine_Learning #NLP #Recognition
    https://t.co/zx2F8mHrIB

  2. Silicon Talent

    RT @SwissCognitive: Neural Network [#AI] helps in Physics Research

    #Deep_Learning #Game #Machine_Learning #NLP #Recognition
    https://t.co/z…

  3. Chris Norrie

    RT @SwissCognitive: Neural Network [#AI] helps in Physics Research

    #Deep_Learning #Game #Machine_Learning #NLP #Recognition
    https://t.co/z…

  4. Marc R Gagné MAPP

    RT @andy_fitze: Neural Network [#AI] helps in Physics Research

    #Deep_Learning #Game #Machine_Learning #NLP #Recognition
    https://t.co/pYKvE…

Leave a Reply