Consulting FAGMA Microsoft Research

Are Self-Service Machine Learning Models the Future of AI Integration?

Are Self-Service Machine Learning Models the Future of AI Integration?

DevOps teams seeking to step up their mojo in developing cutting-edge () features are facing a big skills bottleneck when it comes to data analytics and modeling.

SwissCognitiveDevOps teams seeking to step up their mojo in developing cutting-edge () features are facing a big skills bottleneck when it comes to data analytics and modeling. As a result, the market is seeing an influx of self-service models and -as-a-service offerings designed to help development teams more easily integrate capabilities into their software.

This is coming in direct response to an explosion in demand for capabilities in the enterprise. According to Gartner analysts, adoption in the enterprise tripled in the past year . A report last fall from MIT Sloan Management Review and Boston Consulting Group found that 91% of enterprises believe that will deliver new business growth to them by 2023.

The trouble is that folding functions and predictive

Tools such as these are not always going to obviate the need for data scientists and / specialists on DevOps teams. As Farhadi noted, even a simple service like AI2Go requires development teams to choose the right models for the right situations. Nevertheless, this burgeoning market could take the pressure off teams by minimizing the scale of specialized recruiting, while reducing bottlenecks and dreaded re-work.

into software requires a whole new level of expertise in data science and from cross-functional DevOps teams. They need added skills to choose the right algorithmic approaches, acquire and manage data, train the models and integrate them into the code base and underlying infrastructure so that everything works properly under the hood.

“We have heard from customers everywhere that they want to adopt but struggle to actually get models into production,” said Eric Boyd, vice president of cognitive and for Microsoft.

DevOps leaders today already face an uphill battle to keep their developer ranks staffed with well-trained software engineers. Piling on additional requirements for very specialized and data science expertise further strains those recruitment efforts. According to the most recent Harvey Nash/KPMG CIO Survey, the top one and two technical realms that suffer the biggest skills shortages today are in data science and , with 46% and 38% of CIOs respectively reporting recruiting pain in those areas.

“There’s a huge imbalance between the demand in the market and the supply of the very best experience to actually train these models,” said Ali Farhadi, CEO of Xnor.ai, a Seattle firm that just last week released a self-service platform for developers. Called AI2Go, the platform provides pre-trained models to quickly integrate features such as facial recognition and object classification directly into their software.

“We want to enable anyone who can code to benefit from ,” Farhadi said.[…]

read more – copyright by devops.com

0 Comments

Leave a Reply