Robots have mainly been used to do dangerous, dirty, or repetitive tasks. As such, they have often been hard, metal based, hulking monstrosities. The thing is, we have other sorts of needs for robots too, ones that require a gentler approach.
copyright by bigthink.com
Robots with soft, formable structures have been used to put eggs in a crate and other manual labor tasks. But roboticists hope to move beyond this. As is often the case, the goal is to develop robots modeled after organisms in the environment which are savvy at navigating the terrain and reaching objectives. Roboticists are even proposing soft robots that can grow, repair themselves, and even self-replicate.
While your traditional hard version of robotics has made great leaps forward recently, as anyone who’s seen the video of a robot doing a backflip can attest, soft robots are still in their infancy. They’ve come a long way in the last decade or so. Yet, those in this sub-field still have a number of challenges to overcome. Scientists are just now beginning to experiment with different materials and more radical designs.
How to make them and what tools are used hasn’t been established yet. What’s lacking is a precedent. The sub-field is just now being explored. Designers have a lot to think about. There’s the cost of materials, scalability, strength, speed, and efficiency of movement. For instance, soft robots though more flexible and nimble, often lose strength and durability as a result. Creating artificial muscles or actuators has been particularly challenging. […]
read more – copyright by bigthink.com
Robots have mainly been used to do dangerous, dirty, or repetitive tasks. As such, they have often been hard, metal based, hulking monstrosities. The thing is, we have other sorts of needs for robots too, ones that require a gentler approach.
copyright by bigthink.com
Robots with soft, formable structures have been used to put eggs in a crate and other manual labor tasks. But roboticists hope to move beyond this. As is often the case, the goal is to develop robots modeled after organisms in the environment which are savvy at navigating the terrain and reaching objectives. Roboticists are even proposing soft robots that can grow, repair themselves, and even self-replicate.
While your traditional hard version of robotics has made great leaps forward recently, as anyone who’s seen the video of a robot doing a backflip can attest, soft robots are still in their infancy. They’ve come a long way in the last decade or so. Yet, those in this sub-field still have a number of challenges to overcome. Scientists are just now beginning to experiment with different materials and more radical designs.
How to make them and what tools are used hasn’t been established yet. What’s lacking is a precedent. The sub-field is just now being explored. Designers have a lot to think about. There’s the cost of materials, scalability, strength, speed, and efficiency of movement. For instance, soft robots though more flexible and nimble, often lose strength and durability as a result. Creating artificial muscles or actuators has been particularly challenging. […]
read more – copyright by bigthink.com
Share this: