GraphCore makes AI process visible

It can be difficult for those interested in the evolution of artificial intelligence but don’t have a background in related fields to wrap their minds around the abstract concepts surrounding it. Terms like convolutional neural networks, Bayesian networks and Markov chains sound like almost esoteric-sounding ideas, but these are some of the machine learning techniques being used today for many useful applications we are beginning to take for granted, such as image and speech recognition, medical diagnostics and predictive text generation. But this obtuseness gets a little clearer when one is able to literally see the ‘big picture’ of how these algorithms work from a visual point of view. Using a new processor technology designed for artificially intelligent systems, Bristol-based startup Graphcore used its Intelligent Processing Unit (IPU) to create these stunning images of what the algorithms in a machine learning model look like when they are in action.

Colorful graphs show magical AI

“Unlike a scalar CPU or a vector GPU, the Graphcore Intelligent Processing Unit (IPU) is a graph processor,” explained the company in a blog post . “A computer that is designed to manipulate graphs is the ideal target for the computational graph models that are created by machine learning frameworks.” These false-color images we see here are actually computational graphs. In mathematics, graphs are data structures that show the relationships between vertices, nodes, points as connected by edges, arcs and lines, much like how a diagrammatic map of a human brain and the interconnections between its neurons and synapses might look. In this case, these computational graphs, mapped to an IPU, allow the essence of these models to be glimpsed at a glance, showing a complexity in the connections that are reminiscent of the scans of a human brain, perhaps even recalling a microscopic view of some strange cellular or amoeboid structure […]